

Faculty

Robert A. Anders, MD, PhD Associate Professor of Pathology Co-Director, Tumor Microenvironment Center Bloomberg-Kimmel Institute for Cancer Immune Therapy Johns Hopkins University Baltimore, MD

Feriyl Bhaijee, MD Staff Pathologist AmeriPath Indianapolis, IN

Outline	69
PD-L1 testing in different cancer types	
Expanded role of MSI/MMR status in multiple cancers	
Tumor mutational burden (TMB) as an evolving IO biomarker	
Relationship between TMB and PD-L1	
Expanding use of checkpoint inhibitors to treat different cancer ty	pes
Biomarker landscape	

Images courtesy of Daphne Wang, Johns Hopkins

Evaluation of PD-L1 Expression

Immune Cells IC Numerator

0

Denominator

http://captodayonline.com/scoring-gastric-gej-cancers-pd-I1-expression/

Result

50%

Pathologist Performance

JAMA Oncology | Or A Prospective, Multi-institutional, Pathologist-Based Assessment of 4 Immunohistochemistry Assays for PD-L1 Expression in Non-Small Cell Lung Cancer

David L. Rimm, MD, PhD, Gang Han, PhD, Janis M. Taube, MD, Eunhee S. Yi, MD, Julia A. Bridge, MD; D William W. West, MD, Hong Wu, MD, Anja C. Boden, MD; Junya Figinoto, MD; Hui Yu, MD; Robert And ICC for pathologists by each antibody in Tumor Cells 22c3 28-8 SP142 E1L3N Summary

All, N=90	0.882	0.832	0.869	0.859	0.86(0.02)	📛 TPS
ICO	C for path	ologists b	y each an	tibody in I	nmune Cells	
	22c3	28-8	SP142	E1L3N	Summary	
All, N=90	0.207	0.172	0.185	0.229	0.19(0.03)	IC 🗕

٩

Same Cancer, Different PD-L1 Antibodies,

Cut-off for "positivity" = 10%

Images courtesy of Dr. Andres Matoso Johns Hopkins

PD-L1 Immunohistochemistry: A New Challenge for Pathologists			
Test variables			
 Which PD-L1 antibody? Which staining pattern (TPS, CPS, IC)? Which cutoff value? 	 		
 Which of the patient's tumor samples (primary biopsy, post-treatment, metastasis)? Which pathologist? 			
Most challenging IHC interpretation ever!			

Case Presentation #1

- · 48 year old patient with metastatic gastric cancer
- Oncologist requests microsatellite instability (MSI) status and PD-L1 testing

Statistics: Gastric Cancer

JMMAGenergy 1 Organizations Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer Phase 2 Clinical KEYNOTE-059 Trial

Charles S. Fuchs, MD, WPR Tashhido Do, MD, PHD, Raymond WL Jang, MD, MEL, FRCF, Uni Maru, MD, Tarchistoh, MD Weijing Sur, MD: Shada L. Jaki, MD, Marish A. Shah, MD, Jaan Pellipe Minges, MD, Maruelo Garrida, MD, Taka Galen, M Dr. A. Weinberg, MD, Daniel V, Catenara L, MD, Alsandi Ohtsu, MD, Kohol Shitan, MD, Bant Garoa, MD, Jonatan Illeider,

	Partici	pants (n = 259)
Best Overall Response*	No.	% (95% CI)
Objective response (CR+PR)	30	11.6 (8.0-16.1)
Disease control (CR+PR+SD ≥2 mo)	70	27.0 (21.7-32.9)
CR	6	2.3 (0.9-5.0)
PR	24	9.3 (6.0-13.5)
SD	42	16.2 (11.9-21.3)
Progressive disease	145	56.0 (49.7-62.1)
Nonevaluable	7	2.7 (1.1-5.5)
No assessment ^b	35	13.5 (9.6-18.3)
Duration of response, median (range), mo	8.4	(1.6+ to 17.3+) ^c

PD-L1 Expression in Gastric Cancer

6. A

42% PD-L1 negative 6.4% overall response rate

58% PD-L1 positive 15.5% overall response rate

MSI/PD-L1 Testing of the Biopsy

- PCR testing: All 5 microsatellites intact
- FDA-approved companion PD-L1 immunohistochemistry

PD-L1: What We Know Right Now

- PD-L1 is an targetable immune inhibitor
- Offers improved response rates in patients with aggressive cancers
- It is an imperfect but useful predictive biomarker
- IHC is used in both companion and complementary tests
- IHC interpretation fraught with variables

Tests for MSI and MMR

6

Microsatellite testing uses DNA and is performed by PCR

Mismatch repair proteins are detected by immunohistochemical stains

Next generation sequencing is an emerging DNA-based test

Case Presentation #2

20 C

- 70-year-old patient with metastatic prostate cancer - High-grade, Gleason pattern 5+4
 - Prominent tumor-infiltrating lymphocytes
- · Oncologist requests MSI testing

J Immunother Cancer. 2018;6:29.

Tumor Mutational Burden (TMB): An Evolving Immuno-Oncology Biomarker

Tumor Mutational Burden (TMB)

The number of DNA mutations in a cancer cell

DNA sequencing of all coding region (exons) of the entire genome

Calculated value reported as number of mutations per megabase

>10 mutations/Mb considered "high TMB"

Tumor Mutational Burden (TMB) Testing

Whole Exome Sequencing

- Gold standard
- Expensive
- Generates a large amount of data
- Requires more DNA

Target Gene Par
Uncertainty about m

Uncertainty about minimum necessary coverage
Reduced cost

els

- · Generates less data
- More easily-integrated into hospital labs
- Requires less DNA

Tumor Mutational Burden

- No single definition of which types of mutations to include
- No recommendation on the percentage of exons to sequence
- Multi-stakeholder harmonization effort
- Government, Academia, Diagnostics, Industry, Oper
 Publish universal
- Publish universal best practices defining TMB
- Analytic validation
- Reference standards

C	ostics, Industr	ry, Operational	Clinical Validation +
v	Phase 1: In silico analysis	Phase 2: Empirical analysis	Phase 3: Clinical analysis
	Publicly available TCGA data	Cells derived from human tumors	Clinical Samples
	Identify sources of variability between TMB calculated using whole exome sequencing (WES) its various targeted panels used in the clinic	Agree upon creation of a universal reference standard using WES identify sources of variability after alignment of TMB scores from targeted panels to the	Propose standards for defining clinical application of TMB and inform clinical use

Branca MA et al. Nat Biotechnol. 2016;34:1019-1024

FRIENDS

RESEARCH http://www.focr.org/tmb

Î			
•			

More Evidence that TMB Might be Useful, continued

Carbone. N Engl J Med. 2017;376:2415-26.

TMB: What We Know Right Now

A mechanism driving anti-cancer immune elimination

Testing needs standardization

Predicts progression-free survival

May not predict overall survival

Further studies required to define clinical bene

Case Presentation #3

0

- 57-year-old patient, former smoker, 4.5 cm lung mass on CT scan
- Pathology
 - Adenocarcinoma with pleural involvement
 - Lymph node positive for metastatic disease
 - Stage IV (T2bN1M1a)
- · Oncology referral

Anticipated Testing

- · Mutational analysis
 - EGFR
 - ALK
 - ROS1 – BRAF
 - DIVA
- PD-L1 immunohistochemistry
- Tumor mutational burden?

	atus n	Unstratified hazard ratio*	Progression free survival, CheckMate -057	
Positive	82	1.46 (0.90-2.37)	↓ •	
Not detected	340	0.83 (0.65-1.06)		
Not reported	160	0.83		
Subgroup Analysis	s of PFS		0.25 0.5 1.0 2.0 4.0 Nivolumab ← → Docetaxel	
EGFR Mutation	n	Unstratified	Progression Free Survival, Keynote-010	
EGFR Mutation Status	n	Unstratified hazard ratio*	Progression Free Survival, Keynote-010	
EGFR Mutation Status Positive	n 70/86	Unstratified hazard ratio* 1.79 (0.94-3.42)	Progression Free Survival, Keynote-010	
EGFR Mutation Status Positive Not detected	n 70/86 660/875	Unstratified hazard ratio* 1.79 (0.94-3.42) 0.83 (0.71-0.98)	Progression Free Survival, Keynote-010	

Test Results

- · Mutation analysis
 - BRAF - No mutations detected – EGFR
 - -ALK
 - ROS1
- PD-L1 immunohistochemistry 90% Turnor Proportional Score
- Tumor mutational burden 18 mutations/Mb

Is this patient a candidate for anti-PD-1/L1 blockade?

TMB: What We Don't Know Right Now	
Definition of TMB	
How/when do we test?	
Role of TMB in the presence of other established biomarkers (eg <i>EGFR</i>)	
Are TMB and PD-L1 independent complementary biomarkers	?

Hellmann MD, et al. Cancer Cell. 2018;33:843-852.

Expanding Use of Checkpoint Inhibitors to Treat Different Cancer Types

FD/	A-Appro	ved Chec	kpoint l	nhibitors for	Solid T	umors	
Ipilimumab (MEL)	Pembrolizumab (MEL)	Nivolumab (MEL)	Nivelumab (SQ NSCLC)	Nivolumab (Non-SQ NSCLC) Pembrolizumab (PD-L1+ NSCLC) Nivolumab + (pilimumab (BRAF WT MEL, 1st.ime) Ipilimumab (MEL, adjuvant)	Nivolumab (RCC)	Pe (I	ambrolizumab MEL, 1st-line)
3 2011	9 2014	12 2014	3 2015	10 2015	11 2015		12 2015
Atezolizumab (Bladdor)	Pembrolizumab (HNSCC)	Pembrolizumab (NSCLC, 1st-line) Atezolizumab (NSCLC	Nivolumab (HNSCC)	Nivolumab (Bladder)	Avelumab (Merkel cell)	Durvalumab, ave () Pembrolizumab + (Non-SQ Pembrolizum	Humab, pembrolizumab Bladder) • pemetrexed + platinum NSCLC, 1st-line) nab (MSI-H cancers)
5 2016	9 2016	10 2016	11 2016	2 2017	3 2017		5 2017
Nivolumab (dMMR/MSI-H C	Nivolum RC) Pembrolizu	ab (HCC) Nivolun nab (Gastric) (MEL, ad)	nab (Stage III uvant) consolic	umab NSCLC, Nivelumab + ipilimur lation) (RCC, 1st-line)	mab Pembrol (PD-L1+)	izumab Nivol Cervical) (di	umab + ipilimumab WRRMSI-H CRC)
8 2017	92	017 12 20	17 2 20	18 4 2018	6 2	018	7 2018
Nivolumab (SCLC, 3rd-lin	Cemiplimab-rwic e) (mCSCC)	Pembrolizumab + carb paclitaxel or nab-pac (SQ-NSCLC, 1st-li	oplatin + clitaxel Pembrolizur ne) (HCC)	Atezolizumab + bevacizuma pacifiaxel + carboplatin mab (Non-SQ NSCLC, 1st-line) Pembrolizumab (Merkel ce	b + Pembrolizumab 8) (MEL, adjuvant)	Atezolizumab + nab-paclitaxel (PD-L1+ TNBC)	Atezolizumab + carboplatin + etoposide (ES-SCLC)
8 2018	9 2018	10 2018	11 2018	12 2018	2 2019	3 2019	3 2019
S	ource: https://	www.fda.gov/dru	gs/information	ondrugs/approveddru	gs/ucm2791	74.htm, acc	essed 3/23/201

Number of PD-1/L1 Combo Trials	88 10
Number of PD-1/L1 Combo Trials Using Common Strategies: 1. Anti-CTLA-4 agents: 251 2. Chemotherapies: 370 3. Radiotherapies: 64 4. Anti-VEGFA agents: 43 5. Chemoradiotherapy combos: 42	
	Clinical Accelerator

Summary	
PD-L1 testing in different cancer types	
Expanded role of MSI/MMR status in multiple cancers	
TMB as an evolving immuno-oncology biomarker	
Relationship between TMB and PD-L1	
Expanding use of checkpoint inhibitors to treat different cancer t	ypes
Biomarker landscape	

